Impact to CollapseThe truth about exactly how the World Trade Center towers collapsed matters greatly, both to the families of those who perished and to the future safety of buildings in America and elsewhere. In the spring of 2002, Congress called upon the National Institute of Standards and Technology (NIST) to conduct a thorough investigation into the disaster. Civil engineer S. Shyam Sunder served as the lead investigator. In this audio slide show, Sunder describes the series of structural and fire-related events within the towers as they progressed toward catastrophic collapse. As a result of the study, NIST made recommendations for changes to building codes and standards. These recommendations, as well other sobering findings of the study, are detailed in the text below.—Susan K. Lewis
Making Safer BuildingsGoals of the InvestigationQ: What was the mandate that your investigation had from Congress? S. Shyam Sunder: Our investigation had four objectives. First, to determine why and how the World Trade Center towers collapsed. Second, to analyze the loss of life and injuries, particularly through studying the evacuation and emergency response. Third, to determine the procedures and practices that were used throughout the life of these buildings, so that we would have a basis on which to compare how the buildings performed on 9/11. And lastly, to make recommendations for improvements to building codes and standards. Q: What resources did you rely on most in reconstructing the events? Sunder: First and foremost, we had a very large collection of documents on the design, construction, operation and maintenance of the towers that were provided to us by the Port Authority of New York and New Jersey as well as their consultants and contractors. And we also received documents from the city of New York, primarily from the Fire Department of New York. We then had a very large collection of photographs and videos—somewhere on the order of 7,000 photographs and 150 hours of videotape. This was a unique collection of evidence that was very, very helpful to us in terms of understanding the damage caused by the airplanes, the progression of the fires through the buildings, as well as of the building collapse. The structural design of the buildings was consistent with the codes, and they were sound. We also had two other very, very important sources of input. We had about 236 pieces of steel that represented the 14 different grades of steel that were used in the building. That evidence enabled us to determine the proper grades of steel for use in our models. And the final source of input to our study was interviews. We carried out over 1,000 interviews with surviving occupants and about 116 interviews with emergency responders. So this was a fairly extensive set of eyewitness evidence, complemented by published media accounts. Q: Were there clear design and engineering flaws that accounted for the collapse? Sunder: We did not observe any flaws in terms of the structural design with regard to the collapse. We checked out the entire design, including that of the floor system, the connections of the floor systems to the internal columns, to the exterior columns. All of the elements seemed to have been properly designed. We also found no areas where the buildings were not consistent with the New York City building codes that had an impact on 9/11. We did find some areas where there were differences from the New York City building code. But those differences did not really play a role in 9/11. Q: So were they sound buildings? Sunder: The structural design of the buildings was consistent with the codes, and they were sound. The EvacuationQ: Of the roughly 17,400 occupants present in the towers the morning of the disaster, how many were able to evacuate? Sunder: Well, approximately 87 percent of the towers' occupants were able to evacuate the towers very successfully. And that included some 99 percent of those below the floors of impact. Only about 118 people below the floors of impact lost their lives, approximately 107 in Building One and 11 in Building Two. Q: For those people who were on the floors above the impact, were there any passable stairwells, and were all the elevators knocked out? Sunder: In the case of Building One [North Tower], none of the stairwells were passable after the airplane impact, in that impacted region. And in that same building, of the 99 elevators, only one elevator was functioning, and I think it went up to the 16th floor. In the case of the second building [South Tower], there was one stairwell out of three that was marginally passable, for at least some period of time. And approximately 18 people from above the floors of impact were able to get through that stairwell and make their way out of the building. Once again, of the 99 elevators in that building, only one elevator was functioning, and that elevator took people up to the 40th floor. Q: If the buildings had been at full capacity, would there have been adequate time to evacuate all of the occupants? Sunder: The full capacity of these buildings on a typical day was on the order of 20,000 occupants per building. On 9/11, there were only between 8,500 and 9,000 occupants in each building, and the primary reason for that was it was 8:45 or 8:46 in the morning. Many offices hadn't opened, it was primary election day, first day back to school for children. And tourists don't show up until about mid-day; they certainly don't show up at 8:46. If the buildings had been at full capacity ... almost 14,000 people would have died on 9/11. So we wanted to analyze what would have happened if, in fact, the buildings had been full to capacity of 20,000 people each. Our analysis showed that it would have taken somewhere on the order of three hours to evacuate the buildings in that case. And, of course, we only had 56 or 102 minutes available on 9/11. If the buildings had been at full capacity, our analysis showed that almost 14,000 people would have died on 9/11. Interestingly, about half the people would have died below the floors of impact, and half the people would have died above the floors of impact. The capacity of the stairwells would not have been sufficient had the buildings been full. Emergency ResponseQ: Roughly how quickly did the firefighters make their way up the stairwells? Sunder: In the case of occupants, we found that people were walking down about one minute per floor. In the case of firefighters, we observed that it takes much longer, somewhere on the order of one and a half minutes per floor if you're not carrying gear. And it could be as much as two minutes per floor, if you're carrying 100, 150 pounds of gear, which many of them do, particularly hoses and air bottles. Q: Were the firefighters hindered by evacuees moving down the stairwells? Sunder: Counter-flow was an issue. You had a very large number of occupants going down. Now these evacuees only encountered a firefighter once in a while. It didn't affect them as much. But in the case of the firefighters, they saw this very long and steady stream of occupants coming down. It did make it harder for them to get up. Q: I was struck by something I read in your report about the time it probably takes a firefighter to reach the 60th floor of a burning building. Can you describe this? Sunder: If a fire is raging on the 60th floor of a high-rise building, and all of the elevators are not functioning, it will probably take close to two hours for the firefighters to show up on your floor. That's presuming that they can keep to the two minutes per floor rate, which is going to be very difficult. Most firefighters we have talked to would suggest that they can climb up 15 stories fairly well. They would then need to take a break, maybe then climb up three or four or five more stories. But over about 20 stories is very, very difficult for firefighters to continue at that same rate. They will need to take a very, very long break. And more importantly, even if the firefighters do end up reaching the 60th floor, they will probably not be in a physical condition to be effective in the service that they're trying to provide—whether it's putting out the fire or helping somebody with a medical condition. Q: Are there lessons to be learned from the World Trade Center evacuation? Sunder: Oh, there certainly are broad lessons to be learned from looking at the evacuation. It's taught lessons about the need for adequate stairwell capacity to evacuate an entire building and lessons about providing adequate access for firefighters. We also need to think more about the self-evacuation of mobility-impaired occupants. There were nearly 1,000 mobility-impaired occupants in the buildings, which is a very, very large number. It's about 6 percent of the occupants. And these are not necessarily people who use wheelchairs. These are people who have a medical condition, have had recent surgery, they may be on blood pressure medications, they may be pregnant, they may have asthma, or they may be obese. There are multiple reasons beyond the more conventional definition of mobility impairment. Beyond that, there's also the need to make stairwell enclosures more robust and keep them sufficiently remote from each other, so that if one is damaged, there's a good chance that another is not. RecommendationsQ: Broadly, what recommendations did you make as a result of the NIST study? Sunder: We made 30 recommendations for improvements to building codes and standards and practices as a result of the investigation. They run the gamut of improving the design, operation, and maintenance of buildings such as the World Trade Center tower, but also more normal types of buildings. Q: What do you think are the most important recommendations? Sunder: There are probably four or five areas of recommendations that really stand out. The recommendations on fireproofing are very important. We are calling for better fireproofing in terms of fireproofing having greater bond strength, and also for inspections of fireproofing in a building after it is applied, so that we are sure that the fireproofing that is supposed to be applied is actually there. We know the technology exists. We know the requirements can be implemented. We've asked for the development of new technologies, new kinds of coating materials for fireproofing. There are more paint-like materials—as opposed to spray-applied, fluffy fireproofing—which might have certain advantages. These coatings are already used in the United Kingdom. The second area of recommendations that I would stress deals with active fire-protection systems, such things as sprinklers, smoke-management systems, and fire alarms. In general, we're calling for a greater redundancy. In the case of the World Trade Center towers, as a counter example, the sprinkler systems on a particular floor were connected to the water supply at one point only. So if there were a failure at that single point, then the entire floor would be devoid of water for the sprinkler system. The third area where we would suggest improvements is in better communication systems for emergency responders. A lot has been said publicly about the need for interoperability, which would allow firefighters to talk to police. But as important is intra-operability—the ability of firefighters to talk to other firefighters. This is really difficult in the case of tall buildings and the kinds of events we saw, for two reasons. One, as many of us know, cell phones have difficulty getting signals in tall buildings, because they have steel. For the very same reason, radios have communications difficulties. So we need better technology and better use of existing technology. Secondly, most times when emergency responders are using radio communications at a site, they have five, 10, 100 people, 200 people maximum, so a limited number of frequencies—half a dozen, three or four—are adequate. But when you have nearly 1,000 people on site, as we did on 9/11, the limited number of frequencies is a problem. It becomes very difficult to understand what the protocol should be for communication. So there are some real challenges there that need to be addressed. The fourth area of recommendations that is very important involves the ability of tall buildings to be evacuated fully in an emergency. Our recommendations include the use of adequate stairwell capacity for this purpose. We're not specific as to how one accomplishes this, whether it's through more stairwells or wider stairwells or scissor stairs, where the same shaft has two stairs, one maybe reserved for firefighters. There are many ways to accomplish it. We also recommend that there be specially designed elevators that are protected against fire and impacts. These should be considered for firefighter access as well as for the mobility impaired. But they probably could even be considered for normal building occupants during evacuations. We certainly hope that the legacy of our study is such that the recommendations are acted upon, and that future buildings will be safer. And finally, our recommendations call attention to the need to have redundant structural systems to prevent progressive collapse. We have, over the decades, been building taller and taller buildings, and one of the ways we accomplish that is by making the structures very efficient. And efficiency translates to less use of materials, so that we can minimize the weight of the buildings. By increasing efficiency, in short, we probably have reduced redundancy from buildings that were built decades ago. Q: Some people may feel that the NIST recommendations are too costly to implement and make part of regular building codes. How would you respond to that? Sunder: Well, the NIST recommendations are appropriate, they're reasonable, and they are realistic. They were designed with prudence in mind. The safety improvements that they will ensure will be of lasting value to our society. Absolutely, whenever you invest in safety, you certainly are going to increase cost. Our understanding is that the cost implications of these recommendations are not prohibitive. They are on the order of a few percent of the total construction costs. Obviously, if you have a building that has unique risks beyond the average, the cost will be higher. We are already seeing changes happening with the building of the new World Trade Center Seven, at Ground Zero, and the proposed Freedom Tower. And the recommendation with regard to progressive collapse is something that the United Kingdom has been doing for decades. The numerous tall buildings that represent the skyline of Hong Kong are all designed with progressive collapse requirements. So we know the technology exists. We know the requirements can be implemented. Q: Do you believe that the NIST study of the collapse of the Twin Towers will ensure that what rises in their place will be a safer structure? Sunder: We certainly hope that the legacy of our study is such that the recommendations are acted upon, and that future buildings will be safer—and those that actually rise on Ground Zero will be safer than what were in place on September 11th. And we are heartened by the fact that the first wave of major code changes are now making their way through the private sector building code development process, as we speak, in the country. |
Interview conducted on August 3, 2006 and edited by Susan K. Lewis, editor of NOVA online Building on Ground Zero Home | Send Feedback | Image Credits | Support NOVA |
© | Created August 2006 |