Ice Core Data

NOVA Activity Mountain of Ice

Chemicals in the Ice Sulfate (SO₄²⁻)

The sulfate ion has several sources in this Antarctic ice core. The most important of these are marine biological processes and volcanic activity.

- The sulfate ion produced by marine phytoplankton peaks in the spring. After the dark winter, the hours of daylight lengthen and the sea ice begins to melt and break up. This open ocean environment is ideal for marine phytoplankton growth. As the phytoplankton grow, they release sulfate-rich chemicals into the atmosphere, which in turn get transported by winds over the ice sheet.
- Another source of sulfate is volcanic eruptions. Volcanoes can spew millions of tons of sulfate into the atmosphere and concentrations can remain high for several years following a large volcanic eruption.
- The Tambora volcano in Sumbawa, Indonesia, erupted in 1815; acid from that event is believed to have settled in Antarctic ice about 1816–1817. Another unknown volcano erupted in late 1808 or early 1809.

Sodium (Na⁺) and Chloride (Cl⁻)

In this Antarctic ice core:

- Most of the sodium and chloride ion concentrations come from the ocean in the form of sea salt (NaCl).
- Sodium also has a terrestrial dust source but this only contributes a minute percentage in this core.
- Chlorine can be given off by volcanic eruptions in the form of hydrochloric acid (HCI).
- Sodium and chloride ion concentrations usually peak in the winter-spring season; during the winter-spring months the Antarctic wind strength increases and whips the ocean into foam and transports more sea salt ions inland. If many storms occur during a single season there can be several peaks superimposed upon one another.

Ice Core Data

U.S. ITASE-99-1

Latitude: 80.62 S Longitude: 122.63 W

Depth	Sodium	Chloride	Sulfate
from top,	(Na⁺),	(CI ⁻),	(SO ₄ ²),
in meters	in ppb*	in ppb	in ppb
37.270	16.40	42.63	91.48
37.297	53.14	99.46	96.71
37.324	81.74	140.71	107.92
37.351	50.10	93.78	129.02
37.378	27.99	46.85	203.13
37.405	43.38	69.35	225.60
37.432	82.17	109.37	266.19
37.459	43.40	83.46	264.96
37.486	71.32	115.21	554.33
37.513	54.79	180.34	479.90
37.540	209.26	294.90	768.02
37.567	241.75	328.83	679.31
37.594	68.56	160.46	243.69
37.621	53.20	98.16	280.67
37.648	51.00	93.63	308.64
37.675	37.96	60.38	314.44
37.702	32.42	46.35	295.36
37.729	10.64	20.25	219.09
37.756	16.08	34.28	164.09
37.783	57.75	85.50	162.82
37.810	52.45	85.74	79.41
37.837	30.88	51.17	68.91
37.864	32.45	53.67	61.68
37.891	12.64	32.39	57.15
37.918 37.945	44.91 97.03	82.84 152.79	67.82 87.95
37.945	83.86	136.20	34.01
38.000	22.83	37.84	97.92
38.027	22.96	36.86	95.10
38.054	43.24	63.62	51.29
38.081	54.78	83.29	38.04
38.108	44.26	75.44	31.44
38.135	5.55	13.52	17.32
38.162	5.06	12.37	24.90
38.189	14.81	26.11	41.81
38.216	42.10	64.93	46.09
38.243	40.71	66.41	36.44
38.270	53.17	90.35	59.36
38.297	16.64	46.90	62.55
38.324	39.48	72.02	82.38
38.351	48.87	93.15	69.49
38.378	45.34	82.35	62.39
38.405	122.19	173.73	101.22
38.432	52.43	90.37	74.20
38.459	44.61	69.06	101.28
38.486	54.40	84.59	205.43
38.513	69.42	114.81	273.03
38.540	98.30	142.69	296.44
38.567	98.73	159.80	218.24
38.594	283.47	439.44	225.51
38.621	83.32	166.07	90.38
38.648	33.31	72.26	101.46

^{*} parts per billion (micrograms per liter)